Wave Equation Numerical Resolution: Mathematics and Program
نویسندگان
چکیده
We formally prove the C program that implements a simple numerical scheme for the resolution of the one-dimensional acoustic wave equation. Such an implementation introduces errors at several levels: the numerical scheme introduces method errors, and the floating-point computation leads to round-off errors. We formally specify in Coq the numerical scheme, prove both the method error and the round-off error of the program, and derive an upper bound for the total error. This proves the adequacy of the C program to the numerical scheme and the convergence of the effective computation. To our knowledge, this is the first time a numerical analysis program is fully machine-checked. Key-words: Formal proof of numerical program , Convergence of numerical scheme , Proof of C program , Coq formal proof , Acoustic wave equation , Partial differential equation , Rounding error analysis This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-04) and F ∮ st (ANR-08BLAN-0246-01). ∗ Projet ProVal. {Sylvie.Boldo,Jean-Christophe.Filliatre,Guillaume.Melquiond}@inria.fr. † LRI, UMR 8623, Université Paris-Sud, CNRS, Orsay cedex, F-91405. ‡ Projet Estime. {Francois.Clement,Pierre.Weis}@inria.fr. § LIPN, UMR 7030, Université Paris-Nord, CNRS, Villetaneuse, F-93430. [email protected]. ¶ LIP, Arénaire (INRIA Grenoble Rhône-Alpes, CNRS UMR 5668, UCBL, ENS Lyon), Lyon, F-69364. ha l-0 06 49 24 0, v er si on 1 7 D ec 2 01 1 Résolution numérique de l’équation des ondes : mathématiques et programme Résumé : Nous prouvons formellement le programme C implémentant un schéma numérique simple pour la résolution de l’équation des ondes acoustiques en dimension 1. Une telle implémentation introduit différents types d’erreurs : l’erreur de méthode due au schéma numérique et les erreurs d’arrondi dues aux calculs en virgule flottante. Nous spécifions formellement en Coq le schéma numérique, nous prouvons les deux types d’erreur et nous dérivons une majoration de l’erreur totale. Cela prouve l’adéquation du programme C avec le schéma numérique et la convergence des calculs effectifs. À notre connaissance, c’est la première fois qu’un programme d’analyse numérique est complètement vérifé mécaniquement. Mots-clés : preuve formelle d’un programme numérique, convergence d’un schéma numérique, preuve de programme C, preuve formelle en Coq, équation des ondes acoustiques, équation aux dérivées partielles, analyse d’erreurs d’arrondi. ha l-0 06 49 24 0, v er si on 1 7 D ec 2 01 1 Wave Equation Numerical Resolution: Mathematics and Program 3
منابع مشابه
Numerical solution of the wave equation using shearlet frames
In this paper, using shearlet frames, we present a numerical method for solving the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملOptimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method
In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1112.1795 شماره
صفحات -
تاریخ انتشار 2011